

GROUP THEORY

VOL 2
by Dr C. D. H. Cooper

15th EDITION July 2022

These notes were prepared for students at Macquarie University in Australia but are freely available to anyone. However if you make use of them and are not a Macquarie University student it would be nice if you could email me at christopherdonaldcooper@gmail.com to let me know where you are from. And, if you are from outside of Australia perhaps you could send me a postcard of where you are from to pin up on my wall (Christopher Cooper, 31 Epping Avenue, EASTWOOD, NSW 2122, Australia).

These notes follow volume 1 and contain some more advanced topics as well as some topics from my own research.

I would like to acknowledge the assistance of Dr Ross Moore, Senior Lecturer at Macquarie University, for pointing out some errors and making some useful suggestions.

© C.D.H. Cooper 2022

Introduction

A central concept in volume 1 was groups described by presentations. This has become the modern way of looking at groups – at least finitely presented ones. Group presentations can be accepted quite readily at an intuitive level, which is the way they were first introduced. However in this volume I present a more rigorous approach via free groups.

In another chapter I discuss soluble groups and, in particular, power-commutator presentations of soluble groups. This is where a finite group is presented with power relations of the form $A^n = I$, for each generator, and $[A,B]$ is a word in the previous generators. For such groups the group table can be constructed in a much more straight-forward way than the Todd-Coxeter algorithm. I also discuss nilpotent groups and their similarity to abelian groups.

Another chapter, on infinite abelian groups, provides a valuable contrast to this computational flavour and provides an excuse for talking about Zorn's Lemma and the Axiom of Choice.

Other chapters include some esoteric topics from my own research. These include power automorphisms, Sylow subgroups of symmetric groups and properties of class equations.

CONTENTS

1. CLASSES OF GROUPS	
1.1 Definition and Examples	11
1.2 Products of Classes	13
1.3 Subnormal Series and Subgroups	15
1.4 Closure Operations	16
Exercises for Chapter 1	19
Solutions for Chapter 1	20

2. SOLUBLE GROUPS	
2.1 Conjugates and Commutators	23
2.2 The Derived Series	24
2.3 Soluble Groups	26
2.4 Simple Groups	28
2.5 The Simplicity of A_n	31
2.6 Small Groups are Soluble	33
Exercises for Chapter 2	37
Solutions for Chapter 2	38

3. METACYCLIC GROUPS	
3.1 Polycyclic Groups	41
3.2 Metacyclic Groups	42
3.3 The Structure of Metacyclic Groups	44
3.4 Enumerating Metacyclic Groups	46
Exercises for Chapter 3	52
Solutions for Chapter 3	52

4. P-C PRESENTATIONS	
4.1 Power-Commutator Presentations	55
4.2 P-C Presentations and Soluble Groups	60
Exercises for Chapter 4	61
Solutions for Chapter 4	62

5. HALL SUBGROUPS	
5.1 Definition of a Hall Subgroup	65
5.2 Hall Subgroups of Finite Soluble Groups	66
5.3 Supersoluble Groups	84
Exercises for Chapter 5	90
Solutions for Chapter 5	91

6. NILPOTENT GROUPS	
6.1 The Ascending Central Series	93
6.2 The Descending Central Series	96
6.3 Nilpotent Groups of Class 2	98
6.4 Verbally Abelian Groups	99
Exercises for Chapter 6	101
Solutions for Chapter 6	102

7. INFINITE ABELIAN GROUPS	
7.1 Examples of Infinite Abelian Groups	105
7.2 The Torsion Subgroup	107
7.3 Divisible Groups	111
7.4 Truth in Mathematics	113
7.5 Zorn's Lemma	126
7.6 Divisible Subgroups are Direct Summands	130
7.7 Sylow p -Subgroups	136
7.8 The Prüfer Groups	136
Exercise for Chapter 7	141
Solutions for Chapter 7	142

8. FREE GROUPS	
8.1 Definition	142
8.2 Presentations of Groups	151
8.3 Subgroups of Free Groups	152
8.4 The Todd-Coxeter Algorithm Revisited	163
8.5 Coset Enumeration	163
8.6 Subgroups of Finite Index	165
Exercises for Chapter 8	168
Solutions for Chapter 8	169

9. AUTOMORPHISMS	
9.1 The Automorphism Group	171
9.2 Checking for Automorphisms	173
9.3 Complete Groups	175
Exercises for Chapter 9	178
Solutions for Chapter 9	179

10. POWER AUTOMORPHISMS	
10.1 Definition	181
10.2 Homogeneous and Universal Power Automorphisms	183
10.3 Power Automorphisms of Abelian Groups ..	185
10.4 Automorphisms of the Prüfer Groups	187
10.5 The Centrality Theorem	188
10.6 Hamiltonian Groups	193
Exercises for Chapter 10	199
Solutions for Chapter 10	200

11. CLASS EQUATIONS	
11.1 Babylonian Equations	203
11.2 Some Elementary Tests for Potential Class Equations	207
11.3 The 2N Test	210
11.4 The 3N Test	212
Exercises for Chapter 11	215
Solutions for Chapter 11	216

12. SYLOW SUBGROUPS OF S_n	
12.1 Wreath Products	219
12.2 Wreath Products Where the Action is not Specified	222
12.3 Sylow Subgroups of Symmetric Groups ...	224
Exercises for Chapter 12	228
Solutions for Chapter 12	228

